

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

API Library

Pages = ["api.md"]

CurrentModule = AugmentedGaussianProcesses

Module

AugmentedGaussianProcesses

Model Types

GP
VGP
MCGP
SVGP
OnlineSVGP
MOVGP
MOSVGP
VStP

Likelihood Types

GaussianLikelihood
StudentTLikelihood
LaplaceLikelihood
LogisticLikelihood
HeteroscedasticLikelihood
BayesianSVM
SoftMaxLikelihood
LogisticSoftMaxLikelihood
PoissonLikelihood
NegBinomialLikelihood

Inference Types

AnalyticVI
AnalyticSVI
GibbsSampling
QuadratureVI
QuadratureSVI
MCIntegrationVI
MCIntegrationSVI

Functions and methods

train!
sample
predict_f
predict_y
proba_y

Prior Means

ZeroMean
ConstantMean
EmpiricalMean
AffineMean

Index

Pages = ["api.md"]
Module = ["AugmentedGaussianProcesses"]
Order = [:type, :function]

The bits of math and science behind it

You can find the behind the scene augmentation theory in this paper : Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models [https://arxiv.org/abs/2002.11451].

Gaussian Processes

To quote Wikipedia [https://en.wikipedia.org/wiki/Gaussian_process]
“A Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.”

For a detailed understanding of Gaussian processes, check the wonderful book of Rasmussen and Williams [http://www.gaussianprocess.org/gpml/] and for a quick introduction, check this tutorial by Zoubin Ghahramani [http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf].

Gaussian Processes are extremely practical models since they are non-parametric and are Bayesian. However the basic model is limited to regression with Gaussian noise and does not scale very well to large datasets (>1000 samples). The Augmented Gaussian Processes solve both these problems by adding inducing points as well as transforming the likelihood to get efficient variational inference.

Augmented Gaussian Processes

We are interested in models which consist of a GP prior on a latent function $f\sim \text{GP}(0,k)$, where k is the kernel function and the data y is connected to f via a non-conjugate likelihood $p(y|f)$. We now aim on finding an augmented representation of the model which renders the model conditionally conjugate. Let ω be potential augmentation, then the augmented joint distribution is

$$p(y,f,\omega) =p(y|f,\omega)p(\omega)p(f).$$

The original model can be restored by marginalizing ω, i.e. $p(y,f) =\int p(y,f,\omega)d\omega$.

The goal is to find an augmentation ω, such that the augmented likelihood $p(y|f,\omega$) becomes conjugate to the prior distributions $p(f)$ and $p(\omega)$ and the expectations of the log complete conditional distributions $\log p(f|\omega,y)$ and $\log p(\omega|f,y)$ can be computed in closed-form.

How to find a suitable augmentation?

Many popular likelihood functions can be expressed as a scale mixture of Gaussians

$$p(y|f) =\int N(y;Bf,\text{diag}(\omega^{−1}))p(\omega)d\omega,$$

where B is a matrix (Palmer et al., 2006). This representation directly leads to the augmented likelihood $p(y|\omega,f) =N(y;Bf,\text{diag}(\omega^{−1}))$ which is conjugate in f, i.e. the posterior is again a Gaussian. I am currently working on a generalized and automatic approach, which should be available during this year.

Inference in the augmented model

If we assume that the augmentation, discussed in the previous section, was successful and that we obtained an augmented model $p(y,f,\omega) = p(y|f,\omega)p(f)p(\omega)$ which is conditionally conjugate.
In a conditionally conjugate model variational inference is easy and block coordinate ascent updates can be computed in closed-form.
We follow as structured mean-field approach and assume a decoupling between the latent GP f and the auxiliary variable ω in the variational distribution $q(f,\omega) = q(f) q(\omega)$. We alternate between updating $q(f)$ and $q(\omega)$ by using the typical coordinate ascent (CAVI) updates building on expectations of the log complete conditionals.

The hyperparameter of the latent GP (e.g. length scale) are learned by optimizing the variational lower bound as function of the hyper parameters. We alternate between updating the variational parameters and the hyperparameters.

Sparse Gaussian Processes

Direct inference for GPs has a cubic computational complexity $\mathcal{O}(N^3)$. To scale our model to big datasets we approximate the latent GP by a sparse GP building on inducing points. This reduces the complexity to $\mathcal{O}(M^3)$, where M is the number of inducing points.
Using inducing points allows us to employ stochastic variational inference (SVI) that computes the updates based on mini-batches of the data.

Julia GP Package Comparison

JuliaGaussianProcesses Organization

There is a common effort to bring the GP people together through the JuliaGP organization.
We work on making the building blocks necessary for GP such as KernelFunctions.jl [https://github.com/JuliaGaussianProcesses/KernelFunctions.jl] for kernels, AbstractGPs.jl [https://github.com/JuliaGaussianProcesses/AbstractGPs.jl] for the basic GP definitions and more is coming.
The long-term goal is to have AGP.jl depend on all of this elements and to use it as a wrapper.

🚧 This comparison is now quite outdated and new solutions have been introduced 🚧

AugmentedGaussianProcesses.jl vs Stheno.jl [https://github.com/willtebbutt/Stheno.jl] vs GaussianProcesses.jl [https://github.com/STOR-i/GaussianProcesses.jl]

There are already two other Gaussian Process packages in Julia, however their feature are quite orthogonal. They are roughly compared here:
AGP.jl stands for AugmentedGaussianProcesses.jl and GP.jl for GaussianProcesses.jl

Likelihood

Likelihood	AGP.jl	Stheno.jl	GP.jl
—	:-:	:-:	:-:
Gaussian	✓	✓ (multi-input/multi-output)	✓
Student-T	✓	✖	✓
Bernoulli	✓ (Logistic)	✖	✓ (Probit)
Bayesian-SVM	✓	✖	✖
Poisson	✓	✖	✓
NegativeBinomial	✓	✖	✖
Exponential	✖	✖	✓
MultiClass	✓	✖	✖

Inference

Inference	AGP.jl	Stheno.jl	GP.jl
—	:-:	:-:	:-:
Analytic (Gaussian only)	✓	✓	✓
Variational Inference	✓ (Analytic and Num. Appr.)	✖	✖
Streaming VI	✓	✖	✖
Gibbs-Sampling	✓	✖	✖
MCMC	✖	✖	✓
Expec. Propag.	✖	✖	✖

Kernels

Kernel	AGP.jl	Stheno.jl	GP.jl
—	:-:	:-:	:-:
RBF/Squared Exponential	✓	✓	✓
Matern	✓	✖	✓
Const	✖	✓	✓
Linear	✖	✓	✓
Poly	✖	✓	✓
Periodic	✖	✖	✓
Exponentiated Quadratic	✖	✓	✖
Rational Quadratic	✖	✓	✓
Wiener	✖	✓	✖
Sum of kernel	✖	✖	✓
Product of kernels	✖	✖	✓

Note that the kernels will be defered to MLKernels.jl in the future.

Other features

Feature	AGP.jl	Stheno.jl	GP.jl
—	:-:	:-:	:-:
Sparse GP	✓	✖	✓
Custom prior Mean	✓	✓	✓
Hyperparam. Opt.	✓	?	✓
MultiOutput	✓	✓	✖
Online	✓	✖	✖

Examples

The best way to understand how the package is working is to look at examples. For each model you can find a Jupyter notebook on this repository [https://nbviewer.jupyter.org/github/theogf/AugmentedGaussianProcesses.jl/tree/master/examples/].

 [image: ../_images/banner.png]AugmentedGaussianProcesses.jl [https://github.com/theogf/AugmentedGaussianProcesses.jl]

[image: ../_images/docs-dev-blue.svg]Docs Latest [https://theogf.github.io/AugmentedGaussianProcesses.jl/dev]
[image: ../_images/docs-stable-blue.svg]Docs Stable [https://theogf.github.io/AugmentedGaussianProcesses.jl/stable]
[image: ../_images/badge.svg]BuildStatus
[image: ../_images/badge1.svg]Coverage Status [https://coveralls.io/github/theogf/AugmentedGaussianProcesses.jl?branch=master]

A Julia [http://julialang.org] package for Augmented and Normal Gaussian Processes.

Author

	Théo Galy-Fajou [https://theogf.github.io] PhD Student at Technical University of Berlin.

Installation

AugmentedGaussianProcesses is a registered package [http://pkg.julialang.org] and is symply installed by running

pkg> add AugmentedGaussianProcesses

Basic example

Here is a simple example to start right away :

using AugmentedGaussianProcesses
model = SVGP(compose(SqExponentialKernel(), ScaleTransform(1.0)), LogisticLikelihood(), AnalyticVI(), inducingpoints(KmeansAlg(50), X_train))
train!(model, X_train, y_train; iterations=100)
y_pred = predict_y(model, X_test)

Related Gaussian Processes packages

	GaussianProcesses.jl [https://github.com/STOR-i/GaussianProcesses.jl] : General package for Gaussian Processes with many available likelihoods.

	Stheno.jl [https://github.com/willtebbutt/Stheno.jl] : Package for Gaussian Process regression.

	AbstractGPs.jl [https://github.com/JuliaGaussianProcesses/AbstractGPs.jl] : General package containing base functions for working with GPs.

	GPLikelihoods.jl [https://github.com/JuliaGaussianProcesses/GPLikelihoods.jl] : Package to define likelihoods for latent GP models.

	ApproximateGPs.jl [https://github.com/JuliaGaussianProcesses/ApproximateGPs.jl] : Package for variational GPs based on AbstractGPs.jl.
A general comparison between this package is done on Julia GP Package Comparison.

License

AugmentedGaussianProcesses.jl is licensed under the MIT “Expat” license; see
LICENSE [https://github.com/theogf/AugmentedGaussianProcesses.jl/LICENSE] for
the full license text.

Kernels (Covariance functions)

Kernels are entirely defered to the package KernelFunctions.jl [https://github.com/JuliaGaussianProcesses/KernelFunctions.jl], you can have a look at the documentation to see which are available. Note that, for now, optimization is only possible for ScaleTransform or ARDTransform with ForwardDiff while all others should be compatible with Zygote.

Hyperparameter optimization

The advantage of Gaussian Processes is that it is possible to optimize all the hyperparameters of the model by optimizing the lower bound on the log evidence. One can compute the gradient of it and apply a classical gradient descent algorithm.

Unlike most other packages, the derivatives are computed analytically. One needs to compute the matrix derivatives via the kernel derivatives. If K was defined via $k(x,x’)$ then :

$$\frac{d K}{d\theta} = J_\theta$$

Where J_θ was defined via $\frac{dk(x,x’)}{d\theta}$.
This part is done by automatic differentiation. To chose between Zygote or ForwardDiff use AGP.setKadbackend(:reverse_diff) or AGP.setKadbackend(:forward_diff) respectively.

The rest of the work is simply matrix algebra.

User Guide

There are 3 main actions needed to train and use the different models:

	[Initialization](@ref init)

	[Training](@ref train)

	[Prediction](@ref pred)

[Initialization](@id init)

Possible models

There are currently 8 possible Gaussian Process models:

GP

GP corresponds to the original GP regression model, it is necessarily with a Gaussian likelihood.

 GP(X_train, y_train, kernel; kwargs...)

VGP

VGP is a variational GP model: a multivariate Gaussian is approximating the true posterior. There is no inducing points augmentation involved. Therefore it is well suited for small datasets (~10^3 samples).

 VGP(X_train, y_train, kernel, likelihood, inference; kwargs...)

SVGP

SVGP is a variational GP model augmented with inducing points. The optimization is done on those points, allowing for stochastic updates and large scalability. The counterpart can be a slightly lower accuracy and the need to select the number and the location of the inducing points (however this is a problem currently worked on).

 SVGP(kernel, likelihood, inference, Z; kwargs...)

Where Z is the position of the inducing points.

MCGP

MCGP is a GP model where the posterior is represented via a collection of samples.

 MCGP(X_train, y_train, kernel, likelihood, inference; kwargs...)

OnlineSVGP

OnlineSVGP is an online variational GP model. It is based on the streaming method of Bui 17’, it supports all likelihoods, even with multiple latent GPs.

 OnlineSVGP(kernel, likelihood, inference, ind_point_algorithm; kwargs...)

MOVGP

MOVGP is a multi output variational GP model based on the principle f_output[i] = sum(A[i, j] * f_latent[j] for j in 1:n_latent). The number of latent GP is free.

 MOVGP(X_train, ys_train, kernel, likelihood/s, inference, n_latent; kwargs...)

MOSVGP

MOSVGP is the same thing as MOVGP but with inducing points: a multi output sparse variational GP model, based on Moreno-Muñoz 18’.

 MOVGP(kernel, likelihood/s, inference, n_latent, n_inducing_points; kwargs...)

VStP

VStP is a variational Student-T model where the prior is a multivariate Student-T distribution with scale K, mean μ₀ and degrees of freedom ν.
The inference is done automatically by augmenting the prior as a scale mixture of inverse gamma.

 VStP(X_train, y_train, kernel, likelihood, inference, ν; kwargs...)

[Likelihood](@id likelihood_user)

GP can only have a Gaussian likelihood, while the other have more choices. Here are the ones currently implemented:

Regression

For regression, four likelihoods are available :

	The classical GaussianLikelihood, for Gaussian noise [https://en.wikipedia.org/wiki/Gaussian_noise].

	The StudentTLikelihood, assuming noise from a Student-T [https://en.wikipedia.org/wiki/Student%27s_t-distribution] distribution (more robust to ouliers).

	The LaplaceLikelihood, with noise from a Laplace [https://en.wikipedia.org/wiki/Laplace_distribution] distribution.

	The HeteroscedasticLikelihood, (in development) where the noise is a function of the input: Var(X) = λσ^{-1}(g(X)) where g(X) is an additional Gaussian Process and σ is the logistic function.

Classification

For classification one can select among

	The LogisticLikelihood : a Bernoulli likelihood with a logistic link [https://en.wikipedia.org/wiki/Logistic_function].

	The BayesianSVM likelihood based on the frequentist SVM [https://en.wikipedia.org/wiki/Support_vector_machine#Bayesian_SVM], equivalent to use a hinge loss.

Event Likelihoods

For likelihoods such as Poisson or Negative Binomial, we approximate a parameter by σ(f). Two Likelihoods are implemented :

	The PoissonLikelihood : A discrete Poisson process [https://en.wikipedia.org/wiki/Poisson_distribution] (one parameter per point) with the scale parameter defined as λσ(f).

	The NegBinomialLikelihood : The Negative Binomial likelihood [https://en.wikipedia.org/wiki/Negative_binomial_distribution] where r is fixed and we define the success probability p as σ(f).

Multi-class classification

There is two available likelihoods for multi-class classification:

	The SoftMaxLikelihood, the most common approach. However no analytical solving is possible.

	The LogisticSoftMaxLikelihood, a modified softmax where the exponential function is replaced by the logistic function. It allows to get a fully conjugate model, Corresponding paper [https://arxiv.org/abs/1905.09670].

More options

There is the project to get distributions from Distributions.jl to work directly as likelihoods.

Inference

Inference can be done in various ways.

	AnalyticVI : Variational Inference [https://en.wikipedia.org/wiki/Variational_Bayesian_methods] with closed-form updates. For non-Gaussian likelihoods, this relies on augmented version of the likelihoods. For using Stochastic Variational Inference, one can use AnalyticSVI with the size of the mini-batch as an argument.

	GibbsSampling : Gibbs Sampling of the true posterior, this also rely on an augmented version of the likelihoods, this is only valid for the VGP model at the moment.

The two next methods rely on numerical approximation of an integral and I therefore recommend using the classical Descent approach as it will use anyway the natural gradient updates. ADAM seem to give random results.

	QuadratureVI : Variational Inference with gradients computed by estimating the expected log-likelihood via quadrature.

	MCIntegrationVI : Variational Inference with gradients computed by estimating the expected log-likelihood via Monte Carlo Integration.

[WIP] : AdvancedHMC.jl [https://github.com/TuringLang/AdvancedHMC.jl] will be integrated at some point, although generally the Gibbs sampling is preferable when available.

[Compatibility table](@id compat_table)

Not all inference are implemented/valid for all likelihoods, here is the compatibility table between them.

Likelihood/Inference	AnalyticVI	GibbsSampling	QuadratureVI	MCIntegrationVI
—	:-:	:-:	:-:	:-:
GaussianLikelihood	✔ (Analytic)	✖	✖	✖
StudentTLikelihood	✔	✔	✔	✖
LaplaceLikelihood	✔	✔	✔	✖
HeteroscedasticLikelihood	✔	✔	(dev)	✖
LogisticLikelihood	✔	✔	✔	✖
BayesianSVM	✔	(dev)	✖	✖
LogisticSoftMaxLikelihood	✔	✔	✖	(dev)
SoftMaxLikelihood	✖	✖	✖	✔
Poisson	✔	✔	✖	✖
NegBinomialLikelihood	✔	✔	✖	✖
(dev) means that the feature is possible and may be developped and tested but is not available yet. All contributions or requests are very welcome!

Model/Inference	AnalyticVI	GibbsSampling	QuadratureVI	MCIntegrationVI
—	:-:	:-:	:-:	:-:
VGP	✔	✖	✔	✔
SVGP	✔	✖	✔	✔
MCGP	✖	✔	✖	✖
OnlineSVGP	✔	✖	✖	✖
MO(S)VGP	✔	✖	✔	✔
VStP	✔	✖	✔	✔

Note that for MO(S)VGP you can use a mix of different likelihoods.

Inducing Points

Both SVGP and MOSVGP do not take data directly as inputs but inducing points instead.
AGP.jl directly reexports the InducingPoints.jl [https://github.com/JuliaGaussianProcesses/InducingPoints.jl] package for you to use.
For example to use a k-means approach to select 100 points on your input data you can use:

 Z = inducingpoints(KmeanAlg(100), X)

Z will always be an AbstractVector and be directly compatible with SVGP and MOSVGP

For OnlineSVGP, since it cannot be assumed that you have data from the start, only an online inducing points selection algorithm [https://juliagaussianprocesses.github.io/InducingPoints.jl/dev/#Online-Inducing-Points-Selection] can be used.
The inducing points locations will be initialized with the first batch of data

Additional Parameters

Hyperparameter optimization

One can optimize the kernel hyperparameters as well as the inducing points location by maximizing the ELBO. All derivations are already hand-coded (no AD needed). One can select the optimization scheme via :

	The optimiser keyword, can be nothing or false for no optimization or can be an optimiser from the Flux.jl [https://github.com/FluxML/Flux.jl] library, see list here Optimisers [https://fluxml.ai/Flux.jl/stable/training/optimisers/].

	The Zoptimiser keyword, similar to optimiser it is used for optimizing the inducing points locations, it is by default set to nothing (no optimization).

[PriorMean](@id meanprior)

The mean keyword allows you to add different types of prior means:

	ZeroMean, a constant mean that cannot be optimized.

	ConstantMean, a constant mean that can be optimized.

	EmpiricalMean, a vector mean with a different value for each point.

	AffineMean, μ₀ is given by X*w + b.

[Training](@id train)

Offline models

Training is straightforward after initializing the model by running :

model, state = train!(model, X_train, y_train; iterations=100, callback=callbackfunction)

where the callback option is for running a function at every iteration. callbackfunction should be defined as

function callbackfunction(model, iter)
 # do things here...
end

The returned state will contain different variables such as some kernel matrices and local variables.
You can reuse this state to save some computations when using prediction functions or computing the ELBO.

Note that passing X_train and y_train is optional for GP, VGP and MCGP

Online models

We recommend looking at the tutorial on online Gaussian processes.
One needs to pass a state around, i.e.

 let state=nothing
 for (X_batch, y_batch) in eachbatch((X_train, y_train))
 model, state = train!(model, X_batch, y_batch, state; iterations=10)
 end
 end

[Prediction](@id pred)

Once the model has been trained it is finally possible to compute predictions. There always three possibilities :

	predict_f(model, X_test; covf=true, fullcov=false) : Compute the parameters (mean and covariance) of the latent normal distributions of each test points. If covf=false return only the mean, if fullcov=true return a covariance matrix instead of only the diagonal.

	predict_y(model, X_test) : Compute the point estimate of the predictive likelihood for regression or the label of the most likely class for classification.

	proba_y(model, X_test) : Return the mean with the variance of each point for regression or the predictive likelihood to obtain the class y=1 for classification.

Miscellaneous

🚧 In construction – Should be developed in the near future 🚧

Saving/Loading models

Once a model has been trained it is possible to save its state in a file by using save_trained_model(filename,model), a partial version of the file will be save in filename.

It is then possible to reload this file by using load_trained_model(filename). !!!However note that it will not be possible to train the model further!!! This function is only meant to do further predictions.

🚧 Pre-made callback functions 🚧

There is one (for now) premade function to return a a MVHistory object and callback function for the training of binary classification problems.
The callback will store the ELBO and the variational parameters at every iterations included in iter_points
If X_test and y_test are provided it will also store the test accuracy and the mean and median test loglikelihood

 EditURL = "<unknown>/docs/examples/gpclassification.jl"

using Plots; pyplot()
using HTTP, CSV, DataFrames
using AugmentedGaussianProcesses

data = HTTP.get("https://www.openml.org/data/get_csv/1586217/phpwRjVjk")
data = CSV.read(data.body)
data.Class[data.Class .== 2] .= -1
data = Matrix(data)
X = data[:, 1:2]
Y = data[:, end]

Run sparse classification with increasing number of inducing points

Ms = [4, 8, 16, 32, 64]
models = Vector{AbstractGPModel}(undef, length(Ms) + 1)
kernel = transform(SqExponentialKernel(), 1.0)
for (i, num_inducing) in enumerate(Ms)
 @info "Training with $(num_inducing) points"
 m = SVGP(X, Y,
 kernel,
 LogisticLikelihood(),
 AnalyticVI(),
 num_inducing,
 optimiser = false,
 Zoptimiser = false
)
 @time train!(m, 20)
 models[i] = m
end

@info "Running full model"
mfull = VGP(X, Y,
 kernel,
 LogisticLikelihood(),
 AnalyticVI(),
 optimiser = false
)
@time train!(mfull, 5)
models[end] = mfull

function compute_grid(model, n_grid=50)
 mins = [-3.25,-2.85]
 maxs = [3.65,3.4]
 x_lin = range(mins[1], maxs[1], length=n_grid)
 y_lin = range(mins[2], maxs[2], length=n_grid)
 x_grid = Iterators.product(xlin, ylin)
 y_grid, _ = proba_y(model,vec(collect.(x_grid)))
 return y_grid, x_lin, y_lin
end

function plot_data(X, Y)
 Plots.scatter(eachcol(X)...,
 group = Y,
 alpha=0.2,
 markerstrokewidth=0.0,
 lab="",
 size=(300,500)
)
end

function plot_model(model, X, Y, title = nothing)
 n_grid = 50
 y_pred, x_lin, y_lin = compute_grid(model, n_grid)
 title = if isnothing(title)
 (model isa SVGP ? "M = $(dim(model[1]))" : "full")
 else
 title
 end
 p = plot_data(X, Y)
 Plots.contour!(p,
 x_lin, y_lin,
 reshape(y_pred, n_grid, n_grid)',
 cbar=false, levels=[0.5],
 fill=false, color=:black,
 linewidth=2.0,
 title=title
)
 if model isa SVGP
 Plots.scatter!(p,
 AGP.Zview(model[1]),
 msize=2.0, color="black",
 lab="")
 end
 return p
end

Plots.plot(plot_model.(models, Ref(X), Ref(Y))...,
 layout=(1, length(models)),
 size=(1000, 200)
)

Comparison with Bayesian SVM

mbsvm = VGP(X, Y,
 kernel,
 BayesianSVM(),
 AnalyticVI(),
 optimiser = false
)
@time train!(mbsvm, 5)

Plots.plot(plot_model.([models[end], mbsvm], Ref(X), Ref(Y), ["Logistic", "BSVM"])...,
 layout=(1, 2))

This page was generated using Literate.jl [https://github.com/fredrikekre/Literate.jl].

 EditURL = "<unknown>/docs/examples/gpregression.jl"

Regression with a Gaussian Likelihood

Use necessary packages

using AugmentedGaussianProcesses
const AGP = AugmentedGaussianProcesses
using Distributions
using Plots; pyplot()

We create a toy dataset with X ∈ [-20, 20] and y = 5 * sinc(X)

N = 1000
X = reshape((sort(rand(N)) .- 0.5) * 40.0, N, 1)
σ = 0.01

function latent(x)
 5.0 * sinc.(x)
end
Y = vec(latent(X) + σ * randn(N))

Visualization of the data :

scatter(X, Y, lab="")

Gaussian noise

In this first example we are going to look at the effect of using
inducing points compared to the true Gaussian Process
For simplicity we will keep all inducing points and kernel parameters fixed

Run sparse classification with an increasing number of inducing points

Ms = [4, 8, 16, 32, 64]

Create an empty array of GPs

models = Vector{AbstractGPModel}(undef,length(Ms) + 1)
kernel = SqExponentialKernel()# + PeriodicKernel()
for (index, num_inducing) in enumerate(Ms)
 @info "Training with $(num_inducing) points"
 m = SVGP(X, Y, # First arguments are the input and output
 kernel, # Kernel
 GaussianLikelihood(σ), # Likelihood used
 AnalyticVI(), # Inference usede to solve the problem
 num_inducing; # Number of inducing points used
 optimiser = false, # Keep kernel parameters fixed
 Zoptimiser = false, # Keep inducing points locations fixed
)
 @time train!(m, 100) # Train the model for 100 iterations
 models[index] = m # Save the model in the array
end

Train the model without any inducing points (no approximation)

@info "Training with full model"
mfull = GP(X, Y, kernel,
 noise = σ,
 opt_noise = false, # Keep the noise value fixed
 optimiser = false, # Keep kernel parameters fixed
)
@time train!(mfull, 5);
models[end] = mfull;
nothing #hide

Create a grid and compute prediction on it

function compute_grid(model, n_grid=50)
 mins = -20; maxs = 20
 x_grid = range(mins, maxs, length = n_grid) # Create a grid
 y_grid, sig_y_grid = proba_y(model, reshape(x_grid, :, 1)) # Predict the mean and variance on the grid
 return y_grid, sig_y_grid, x_grid
end

Plot the data as a scatter plot

function plotdata(X,Y)
 return Plots.scatter(X, Y, alpha=0.33,
 msw=0.0, lab="", size=(300,500))
end

function plot_model(model, X, Y, title = nothing)
 n_grid = 100
 y_grid, sig_y_grid, x_grid = compute_grid(model,n_grid)
 title = if isnothing(title)
 (model isa SVGP ? "M = $(dim(model[1]))" : "full")
 else
 title
 end

 p = plotdata(X, Y)
 Plots.plot!(p, x_grid, y_grid,
 ribbon=2 * sqrt.(sig_y_grid), # Plot 2 std deviations
 title=title,
 color="red",
 lab="",
 linewidth=3.0)
 if model isa SVGP # Plot the inducing points as well
 Plots.plot!(p,
 vec(model.f[1].Z),
 zeros(dim(model.f[1])),
 msize=2.0,
 color="black",t=:scatter,lab="")
 end
 return p
end;

Plots.plot(plot_model.(models, Ref(X), Ref(Y))...,
 layout=(1, length(models)),
 size=(1000,200)
) # Plot all models and combine the plots

Non-Gaussian Likelihoods

We now look at using another noise than Gaussian noise.
In AGP.jl you can use the Student-T likelihood,
the Laplace likelihood and the Heteroscedastic likelihood

We will use the same toy dataset for our experiment

Create an array of model with different likelihoods:

likelihoods = [StudentTLikelihood(3.0),
 LaplaceLikelihood(3.0),
 HeteroscedasticLikelihood(1.0)]
ngmodels = Vector{AbstractGPModel}(undef, length(likelihoods)+1)
for (i, l) in enumerate(likelihoods)
 @info "Training with the $(l)" # We need to use VGP
 m = VGP(X, Y, # First arguments are the input and output
 kernel, # Kernel
 l, # Likelihood used
 AnalyticVI(), # Inference usede to solve the problem
 optimiser = false, # Keep kernel parameters fixed
)
 @time train!(m, 10) # Train the model for 100 iterations
 ngmodels[i] = m # Save the model in the array
end

ngmodels[end] = models[end] # Add the Gaussian model

We can now repeat the prediction from before :

Plots.plot(plot_model.(ngmodels, Ref(X), Ref(Y), ["Student-T", "Laplace", "Heteroscedastic", "Gaussian"])...,
 layout=(1, length(ngmodels)),
 size=(1000,200)
) # Plot all models and combine the plots

This page was generated using Literate.jl [https://github.com/fredrikekre/Literate.jl].

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/banner.png

